Future proof.

 

There is no such thing as future proof anything, of course, so I use the term to refer to evidence that a current idea is becoming more and more probable of something we will see in the future. The evidence I am talking about surfaced in a FastCo article this week about biohacking and the new frontier of digital implants. Biohacking has a loose definition and can reference using genetic material without regard to ethical procedures, to DIY biology, to pseudo-bioluminescent tattoos, to body modification for functional enhancement—see transhumanism. Last year, my students investigated this and determined that a society willing to accept internal implants was not a near-future scenario. Nevertheless, according to FastCo author Steven Melendez,

“a survey released by Visa last year that found that 25% of Australians are ‘at least slightly interested’ in paying for purchases through a chip implanted in their bodies.”

Melendez goes on to describe a wide variety of implants already in use for medical, artistic and personal efficiency and interviews Tim Shank, president of a futurist group called TwinCities+. Shank says,

“[For] people with Android phones, I can just tap their phone with my hand, right over the chip, and it will send that information to their phone..”

implants
Amal Graafstra’s Hands [Photo: courtesy of Amal Graafstra] c/o WIRED
The popularity of body piercings and tattoos— also once considered as invasive procedures—has skyrocketed. Implantable technology, especially as it becomes more functionally relevant could follow a similar curve.

I saw this coming some years ago when writing The Lightstream Chronicles. The story, as many of you know, takes place in the far future where implantable technology is mundane and part of everyday life. People regulate their body chemistry access the Lightstream (the evolved Internet) and make “calls” using their fingertips embedded with Luminous Implants. These future implants talk directly to implants in the brain, and other systemic body centers to make adjustments or provide information.

An ad for Luminous Implants, and the "tap" numbers for local attractions.
An ad for Luminous Implants, and the “tap” numbers for local attractions.
Bookmark and Share

When the stakes are low, mistakes are beneficial. In more weighty pursuits, not so much.

 

I’m from the old school. I suppose, that sentence alone makes me seem like a codger. Let’s call it the eighties. Part of the art of problem solving was to work toward a solution and get it as tight as we possibly could before we committed to implementation. It was called the design process and today it’s called “design thinking.” So it was heresy to me when I found myself, some years ago now, in a high-tech corporation where this was a doctrine ignored. I recall a top-secret, new product meeting in which the owner and chief technology officer said, “We’re going to make some mistakes on this, so let’s hurry up and make them.” He was not speaking about iterative design, which is part and parcel of the design process, he was talking about going to market with the product and letting the users illuminate what we should fix. Of course, the product was safe and met all the legal standards, but it was far from polished. The idea was that mass consumer trial-by-fire would provide us with an exponentially higher data return than if we tested all the possible permutations in a lab at headquarters. He was, apparently, ahead of his time.

In a recent FastCo article on Facebook’s race to be the leader in AI, author Daniel Terdiman cites some of Mark Zuckerberg’s mantras: “‘Move fast and break things,’ or ‘Done is better than perfect.’” We can debate this philosophically or maybe even ethically, but it is clearly today’s standard procedure for new technologies, new science and the incessant race to be first. Here is a quote from that article:

“Artificial intelligence has become a vital part of scaling Facebook. It’s already being used to recognize the faces of your friends in photographs, and curate your newsfeed. DeepText, an engine for reading text that was unveiled last week, can understand “with near-human accuracy” the content in thousands of posts per second, in more than 20 different languages. Soon, the text will be translated into a dozen different languages, automatically. Facebook is working on recognizing your voice and identifying people inside of videos so that you can fast forward to the moment when your friend walks into view.”

The story goes on to say that Facebook, though it is pouring tons of money into AI, is behind the curve, having begun only three or so years ago. Aside from the fact that FB’s accomplishments seem fairly impressive (at least to me), people like Google and Microsoft are apparently way ahead. In the case of Microsoft, the effort began more than twenty years ago.

Today, the hurry up is accelerated by open sourcingWikipedia explains the benefits of open sourcing as:

“The open-source model, or collaborative development from multiple independent sources, generates an increasingly more diverse scope of design perspective than any one company is capable of developing and sustaining long term.”

The idea behind open sourcing is that the mistakes will happen even faster along with the advancements. It is becoming the de facto approach to breakthrough technologies. If fast is the primary, maybe even the only goal, it is a smart strategy. Or is it a touch short sighted? As we know, not everyone who can play with the code that a company has given them has that company’s best interests in mind. As for the best interests of society, I’m not sure those are even on the list.

To examine our motivations and the ripples that emanate from them, of course, is my mission with design fiction and speculative futures. Whether we like it or not, a by-product of technological development—aside from utopia—is human behavior. There are repercussions from the things we make and the systems that evolve from them. When your mantra is “Move fast and break things,” that’s what you’ll get. But there is certainly no time the move-fast loop to consider the repercussions of your actions, or the unexpected consequences. Consequences will appear all by themselves.

The technologists tell us that when we reach the holy grail of AI (whatever that is), we will be better people and solve the world’s most challenging problems. But in reality, it’s not that simple. With the nuances of AI, there are potential problems, or mistakes, that could be difficult to fix; new predicaments that humans might not be able to solve and AI may not be inclined to resolve on our behalf.

In the rush to make mistakes, how grave will they be? And, who is responsible?

Bookmark and Share

“At a certain point…”

 

A few weeks ago Brian Barrett of WIRED magazine reported on an “NEW SURVEILLANCE SYSTEM MAY LET COPS USE ALL OF THE CAMERAS.” According to the article,

“Computer scientists have created a way of letting law enforcement tap any camera that isn’t password protected so they can determine where to send help or how to respond to a crime.”

Barrett suggests that America has 30 million surveillance cameras out there. The above sentence, for me, is loaded. First of all, as with most technological advancements, they are always couched in the most benevolent form. These scientists are going to help law enforcement send help or respond to crimes. This is also the argument that the FBI used to try to force Apple to provide a backdoor to the iPhone. It was for the common good.

If you are like me, you immediately see a giant red flag waving to warn us of the gaping possibility for abuse. However, we can take heart to some extent. The sentence mentioned above also limits law enforcement access to, “any camera that isn’t password protected.” Now the question is: What percentage of the 30 million cameras are password protected? Does it include, for example, more than kennel cams or random weather cams? Does it include the local ATM, traffic, and other security cameras? The system is called CAM2.

“…CAM2 reveals the location and orientation of public network cameras, like the one outside your apartment.”

It can aggregate the cameras in a given area and allow law enforcement to access them. Hmm.

Last week I teased that some of the developments that I reserved for 25, 50 or even further into the future, through my graphic novel The Lightstream Chronicles, are showing signs of life in the next two or three years. A universal “cam” system like this is one of them; the idea of ubiquitous surveillance or the mesh only gets stronger with more cameras. Hence the idea behind my ubiquitous surveillance blog. If there is a system that can identify all of the “public network” cams, how far are we from identifying all of the “private network” cams? How long before these systems are hacked? Or, in the name of national security, how might these systems be appropriated? You may think this is the stuff of sci-fi, but it is also the stuff of design-fi, and design-fi, as I explained last week, is intended to make us think; about how these things play out.

In closing, WIRED’s Barrett raised the issue of the potential for abusing systems such as CAM2 with Gautam Hans, policy counsel at the Center for Democracy & Technology. And, of course, we got the standard response:

“It’s not the best use of our time to rail against its existence. At a certain point, we need to figure out how to use it effectively, or at least with extensive oversight.”

Unfortunately, history has shown that that certain point usually arrives after something goes egregiously wrong. Then someone asks, “How could something like this happen?”

Bookmark and Share