Disruption. Part 1

 

We often associate the term disruption with a snag in our phone, internet or other infrastructure service, but there is a larger sense of the expression. Technological disruption refers the to phenomenon that occurs when innovation, “…significantly alters the way that businesses operate. A disruptive technology may force companies to alter the way that they approach their business, risk losing market share or risk becoming irrelevant.”1

Some track the idea as far back as Karl Marx who influenced economist Joseph Schumpeter to coin the term “creative destruction” in 1942.2 Schumpeter described that as the “process of industrial mutation that incessantly revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new one.” But it was, “Clayton M. Christensen, a Harvard Business School professor, that described it’s current framework. “…a disruptive technology is a new emerging technology that unexpectedly displaces an established one.”3

OK, so much for the history lesson. How does this affect us? Historical examples of technological disruption go back to the railroads, and the mass produced automobile, technologies that changed the world. Today we can point to the Internet as possibly this century’s most transformative technology to date. However, we can’t ignore the smartphone, barely ten years old which has brought together a host of converging technologies substantially eliminating the need for the calculator, the dictaphone, land lines, the GPS box that you used to put on your dashboard, still and video cameras, and possibly your privacy. With the proliferation of apps within the smartphone platform, there are hundreds if not thousands of other “services” that now do work that we had previously done by other means. But hold on to your hat. Technological disruption is just getting started. For the next round, we will see an increasingly pervasive Internet of Things (IoT), advanced robotics, exponential growth in Artificial Intelligence (AI) and machine learning, ubiquitous Augmented Reality (AR), Virtual Reality (VR), Blockchain systems, precise genetic engineering, and advanced renewable energy systems. Some of these such as Blockchain Systems will have potentially cataclysmic effects on business. Widespread adoption of blockchain systems that enable digital money would eliminate the need for banks, credit card companies, and currency of all forms. How’s that for disruptive? Other innovations will just continue to transform us and our behaviors. Over the next few weeks, I will discuss some of these potential disruptions and their unique characteristics.

Do you have any you would like to add?

1 http://www.investopedia.com/terms/d/disruptive-technology.asp#ixzz4ZKwSDIbm

2 http://www.investopedia.com/terms/c/creativedestruction.asp

3 http://www.intelligenthq.com/technology/12-disruptive-technologies/

See also: Disruptive technologies: Catching the wave, Journal of Product Innovation Management, Volume 13, Issue 1, 1996, Pages 75-76, ISSN 0737-6782, http://dx.doi.org/10.1016/0737-6782(96)81091-5.
(http://www.sciencedirect.com/science/article/pii/0737678296810915)

Bookmark and Share

Of autonomous machines.

 

Last week we talked about how converging technologies can sometimes yield unpredictable results. One of the most influential players in the development of new technology is DARPA and the defense industry. There is a lot of technological convergence going on in the world of defense. Let’s combine robotics, artificial intelligence, machine learning, bio-engineering, ubiquitous surveillance, social media, and predictive algorithms for starters. All of these technologies are advancing at an exponential pace. It’s difficult to take a snapshot of any one of them at a moment in time and predict where they might be tomorrow. When you start blending them the possibilities become downright chaotic. With each step, it is prudent to ask if there is any meaningful review. What are the ramifications for error as well as success? What are the possibilities for misuse? Who is minding the store? We can hope that there are answers to these questions that go beyond platitudes like, “Don’t stand in the way of progress.”, “Time is of the essence.”, or “We’ll cross that bridge when we come to it.”

No comment.

I bring this up after having seen some unclassified documents on Human Systems, and Autonomous Defense Systems (AKA autonomous weapons). (See a previous blog on this topic.) Links to these documents came from a crowd-funded “investigative journalist” Nafeez Ahmed, publishing on a website called INSURGE intelligence.

One of the documents entitled Human Systems Roadmap is a slide presentation given to the National Defense Industry Association (NDIA) conference last year. The list of agencies involved in that conference and the rest of the documents cited reads like an alphabet soup of military and defense organizations which most of us have never heard of. There are multiple components to the pitch, but one that stands out is “Autonomous Weapons Systems that can take action when needed.” Autonomous weapons are those that are capable of making the kill decision without human intervention. There is also, apparently some focused inquiry into “Social Network Research on New Threats… Text Analytics for Context and Event Prediction…” and “full spectrum social media analysis.” We could get all up in arms about this last feature, but recent incidents in places such as, Benghazi, Egypt, and Turkey had a social networking component that enabled extreme behavior to be quickly mobilized. In most cases, the result was a tragic loss of life. In addition to sharing photos of puppies, social media, it seems, is also good at organizing lynch mobs. We shouldn’t be surprised that governments would want to know how to predict such events in advance. The bigger question is how we should intercede and whether that decision should be made by a human being or a machine.

There are lots of other aspects and lots more documents cited in Ahmed’s lengthy albeit activistic report, but the idea here is that rapidly advancing technology is enabling considerations which were previously held to be science fiction or just impossible. Will we reach the point where these systems are fully operational before we reach the point where we know they are totally safe? It’s a problem when technology grows faster that policy, ethics or meaningful review. And it seems to me that it is always a problem when the race to make something work is more important than the understanding the ramifications if it does.

To be clear, I’m not one of those people who thinks that anything and everything that the military can conceive of is automatically wrong. We will never know how many catastrophes that our national defense services have averted by their vigilance and technological prowess. It should go without saying that the bad guys will get more sophisticated in their methods and tactics, and if we are unable to stay ahead of the game, then we will need to get used to the idea of catastrophe. When push comes to shove, I want the government to be there to protect me. That being said, I’m not convinced that the defense infrastructure (or any part of the tech sector for that matter) is as diligent to anticipate the repercussions of their creations as they are to get them functioning. Only individuals can insist on meaningful review.

Thoughts?

 

Bookmark and Share

Paying attention.

I want to make a Tshirt. On the front, it will say, “7 years is a long time.” On the back, it will say, “Pay attention!”

What am I talking about? I’ll start with some background. This semester, I am teaching a collaborative studio with designers from visual communications, interior design, and industrial design. Our topic is Humane Technologies, and we are examining the effects of an Augmented Reality (AR) system that could be ubiquitous in 7 years. The process began with an immersive scan of the available information and emerging advances in AR, VR, IoT, human augmentation (HA) and, of course, AI. In my opinion, these are a just a few of the most transformative technologies currently attracting the heaviest investment across the globe. And where the money goes there goes the most rapid advancement.

A conversation starter.

One of the biggest challenges for the collaborative studio class (myself included) is to think seven years out. Although we read Kurzweil’s Law of Accelerating Returns, our natural tendency is to think linearly, not exponentially. One of my favorite Kurzweil illustrations is this:

“Exponentials are quite seductive because they start out sub-linear. We sequenced one ten-thousandth of the human genome in 1990 and two ten-thousandths in 1991. Halfway through the genome project, 7 ½ years into it, we had sequenced 1 percent. People said, “This is a failure. Seven years, 1 percent. It’s going to take 700 years, just like we said.” Seven years later it was done, because 1 percent is only seven doublings from 100 percent — and it had been doubling every year. We don’t think in these exponential terms. And that exponential growth has continued since the end of the genome project. These technologies are now thousands of times more powerful than they were 13 years ago, when the genome project was completed.”1

So when I hear a policymaker, say, “We’re a long way from that,” I cringe. We’re not a long way away from that. The iPhone was introduced on June 29, 2007, not quite ten years ago. The ripple-effects from that little technological marvel are hard to catalog. With the smartphone, we have transformed everything from social and behavioral issues to privacy and safety. As my students examine the next possible phase of our thirst for the latest and greatest, AR (and it’s potential for smartphone-like ubiquity), I want them to ask the questions that relate to supporting systems, along with the social and ethical repercussions of these transformations. At the end of it all, I hope that they will walk away with an appreciation for paying attention to what we make and why. For example, why would we make a machine that would take away our job? Why would we build a superintelligence? More often than not, I fear the answer is because we can.

Our focus on the technologies mentioned above is just a start. There are more than these, and we shouldn’t forget things like precise genetic engineering techniques such as CRISPR/Cas9 Gene Editing, neuromorphic technologies such as microprocessors configured like brains, the digital genome that could be the key to disease eradication, machine learning, and robotics.

Though they may sound innocuous by themselves, they each have gigantic implications for disruptions to society. The wild card in all of these is how they converge with each other and the results that no one anticipated. One such mutation would be when autonomous weapons systems (AI + robotics + machine learning) converge with an aggregation of social media activity to predict, isolate and eliminate a viral uprising.

From recent articles and research by the Department of Defense, this is no longer theoretical; we are actively pursuing it. I’ll talk more about that next week. Until then, pay attention.

 

1. http://www.bizjournals.com/sanjose/news/2016/09/06/exclusivegoogle-singularity-visionary-ray.htm
Bookmark and Share