Augmented evidence. It’s a logical trajectory.

A few weeks ago I gushed about how my students killed it at a recent guerrilla future enactment on a ubiquitous Augmented Reality (AR) future. Shortly after that, Mark Zuckerberg announced the Facebook AR platform. The AR uses the camera on your smartphone, and according to a recent WIRED article, transforms your smartphone into an AR engine.

Unfortunately, as we all know, (and so does Zuck), the smartphone isn’t currently much of an engine. AR requires a lot of processing, and so does the AI that allows it to recognize the real world so it can layer additional information on top of it. That’s why Facebook (and others), are building their own neural network chips so that the platform doesn’t have to run to the Cloud to access the processing required for Artificial Intelligence (AI). That will inevitably happen which will make the smartphone experience more seamless, but that’s just part the challenge for Facebook.

If you add to that the idea that we become even more dependent on looking at our phones while we are walking or worse, driving, (think Pokemon GO), then this latest announcement is, at best, foreshadowing.

As the WIRED article continues, tech writer Brian Barrett talked to Blair MacIntyre, from Georgia Tech who says,

“The phone has generally sucked for AR because holding it up and looking through it is tiring, awkward, inconvenient, and socially unacceptable,” says MacIntyre. Adding more of it doesn’t solve those issues. It exacerbates them. (The exception might be the social acceptability part; as MacIntyre notes, selfies were awkward until they weren’t.)”

That last part is an especially interesting point. I’ll have to come back to that in another post.

My students did considerable research on exactly this kind of early infancy that technologies undergo on their road to ubiquity. In another WIRED article, even Zuckerberg admitted,

“We all know where we want this to get eventually,” said Zuckerberg in his keynote. “We want glasses, or eventually contact lenses, that look and feel normal, but that let us overlay all kinds of information and digital objects on top of the real world.”

So there you have it. Glasses are the end game, but as my students agreed, contact lenses not so much. Think about it. If you didn’t have to stick a contact lens in your eyeball, you wouldn’t and the idea that they could become ubiquitous (even if you solved the problem of computing inside a wafer thin lens and the myriad of problems with heat, and in-eye-time), they are much farther away, if ever.

Student design team from Ohio State’s Collaborative Studio.

This is why I find my student’s solution so much more elegant and a far more logical trajectory. According to Barrett,

“The optimistic timeline for that sort of tech, though, stretches out to five or 10 years. In the meantime, then, an imperfect solution takes the stage.”

My students locked it down to seven years.

Finally, Zuckerberg made this statement:

“Augmented reality is going to help us mix the digital and physical in all new ways,” said Zuckerberg at F8. “And that’s going to make our physical reality better.”

Except that Zuck’s version of better and mine or yours may not be the same. Exactly what is wrong with reality anyway?

If you want to see the full-blown presentation of what my students produced, you can view it at

Note: Currently the AugHumana experience is superior on Google Chrome.  If you are a Safari or Firefox purest, you may have to wait for the page to load (up to 2 minutes). We’re working on this. So, just use Chrome this time. We hope to have it fixed soon.

Bookmark and Share

Autonomous Assumptions

I’m writing about a recent post from futurist Amy Webb. Amy is getting very political lately which is a real turn-off for me, but she still has her ear to the rail of the future, so I will try to be more tolerant. Amy carried a paragraph from an article entitled, “If you want to trust a robot, look at how it makes decisions” from The Conversation, an eclectic “academic rigor, journalistic flair” blog site. The author, Michael Fisher, a Professor of Computer Science, at the University of Liverpool, says,

“When we deal with another human, we can’t be sure what they will decide but we make assumptions based on what we think of them. We consider whether that person has lied to us in the past or has a record for making mistakes. But we can’t really be certain about any of our assumptions as the other person could still deceive us.

Our autonomous systems, on the other hand, are essentially controlled by software so if we can isolate the software that makes all the high-level decisions – those decisions that a human would have made – then we can analyse the detailed working of these programs. That’s not something you can or possibly ever could easily do with a human brain.”

Fisher thinks that might make autonomous systems more trustworthy than humans. He says that by software analysis we can be almost certain that the software that controls our systems will never make bad decisions.

There is a caveat.

“The environments in which such systems work are typically both complex and uncertain. So while accidents can still occur, we can at least be sure that the system always tries to avoid them… [and] we might well be able to prove that the robot never intentionally means to cause harm.”

That’s comforting. But OK, computers fly and land airplanes, they make big decisions about air traffic, they are driving cars with people in them, they control much of our power grid, and our missile defense, too. So why should we worry? It is a matter of definitions. We use terms when describing new technologies that clearly have different interpretations. How you define bad decisions? Fisher says,

“We are clearly moving on from technical questions towards philosophical and ethical questions about what behaviour we find acceptable and what ethical behaviour our robots should exhibit.”

If you have programmed an autonomous soldier to kill the enemy, is that ethical? Assuming that the Robocop can differentiate between good guys and bad guys, you have nevertheless opened the door to autonomous destruction. In the case of an autonomous soldier in the hands of a bad actor, you may be the enemy.

My point is this. It’s not necessarily the case that we understand how the software works and that it’s reliable, it may be more about who programmed the bot in the first place. In my graphic novel, The Lightstream Chronicles, there are no bad robots (I call them synths), but occasionally bad people get a hold of the good synths and make them do bad things. They call that twisting. It’s illegal, but of course, that doesn’t stop it. Criminals do it all the time.

You see, even in the future some things never change. In the words of Aldous Huxley,

“Technological progress has merely provided us with more efficient means for going backwards.”


Bookmark and Share

Heady stuff.

Last week we talked about how some researchers and scientists on the cutting edge are devising guidelines to attempt to ensure that potentially transformative technologies (like AI) remain safe and beneficial, rather than becoming a threat to humanity. And then, there were industries (like nanotech) that have already blown past any attempt at a meaningful review and now exist in thousands of consumer products, and nobody knows if their safe and the companies who produce them don’t even have to tell us they are part of the composition.

This week I’m going to talk about why I look askance at transformative technologies. Maybe it is because I am a writer at heart. Fiction, specifically science fiction, has captured my attention since childhood. It is my genre of choice. Now that nearly all of the science-based science fiction is no longer fiction, our tendency is to think that the only thing left to do is react or adapt. I can understand this since you can’t isolate a single technology as a thing, you can’t identify precisely from where it started, or how it morphed into what it is. Technologies converge, and they become systems, and systems are dauntingly complex. As humans, we create things that become systems. Even in non-digital times, the railroad ushered in a vastly complex system so much so that we had to invent other things just to deal with it, like a clock. What good was a train if it wasn’t on time? And what good was your time if it wasn’t the same as my time?

Fast forward. Does the clock have any behavioral effect in your life?

My oft-quoted scholars at ASU, Allenby, and Sarewitz see things like trains as level one technologies. They spawn systems in the level two realm that are often far more intricate than figuring out how to get this train contraption to run on rails across the United States.

So the nature of convergence and the resulting complexity of systems is one reason for my wariness of transformative tech.Especially now, that we are building things and we don’t understand how they work. We are inventing things that don’t need us to teach them, and that means that we can’t be sure what they are learning or how. If we can barely understand the complexity of the system that has grown up around the airline industry (which we at one time inherently grasped), how are we going to understand systems that spring up around these inventions that, at the core, we know what they do, but don’t know how?

The second reason is human nature. Your basic web dictionary defines the sociology of human nature as: “[…]the character of human conduct, generally regarded as produced by living in primary groups.” Appreciating things like love and compassion, music and art, consciousness, thought, languages and memory are characteristics of human nature. So are evil and vice, violence and hatred, the quest for power and greed. The latter have a tendency to undermine our inventions for good. Sometimes they are our downfall.

With history as our teacher, if we go blindly forward paying little attention to reason one, the complexity of systems, or reason two, the potential for bad actors, or both, that does not bode well.

I’ve been rambling a bit, so I have to wrap this up. I’ve taken a long way around to say that if you are among those who look at all this tech, and the unimaginable scope of the systems we have created and that the only thing left to do is react or adapt, that this is not the case.

While I can see the dark cloud behind every silver lining, it enables me to bring an umbrella on occasion.

Paying attention to the seemingly benign and insisting on a meaningful review of that which we don’t fully understand is the first step. It may seem as though it will be easier to adapt, but I don’t think so.

I guess that’s the reason behind this blog, behind my graphic novel, and my ongoing research and activism through design fiction. If you’re not paying attention, then I’ll remind you.

Bookmark and Share

The right thing to do. Remember that idea?

I’ve been detecting some blowback recently regarding all the attention surrounding emerging AI, it’s near-term effect on jobs, and it’s long-term impact on humanity. Having an anticipatory mindset toward artificial intelligence is just the logical thing to do. As I have said before, designing a car without a braking system would be foolish. Anticipating the eventuality that you might need to slow down or stop the car is just good design. Nevertheless, there are a lot of people, important people in positions of power that think this is a lot of hooey. They must think that human ingenuity will address any unforeseen circumstances, that science is always benevolent, that stuff like AI is “a long way off,” that the benefits outweigh the downsides, and that all people are basically good. Disappointed I am that this includes our Treasury Secretary Steve Mnuchin. WIRED carried the story and so did my go-to futurist Amy Webb. In her newsletter Amy states,

“When asked about the future of artificial intelligence, automation and the workforce at an Axios event, this was Mnuchin’s reply: ‘It’s not even on our radar screen,’ he said, adding that significant workforce disruption due to AI is ‘50 to 100’ years away. ‘I’m not worried at all’”

Sigh! I don’t care what side of the aisle you’re on, that’s just plain naive. Turning a blind eye to potentially transformative technologies is also dangerous. Others are skeptical of any regulation (perhaps rightly so) that stifles innovation and progress. But safeguards and guidelines are not that. They are well-considered recommendations that are designed to protect while facilitating research and exploration. On the other side of the coin, they are also not laws, which means that if you don’t want to or don’t care to, you don’t have to follow them.

Nevertheless, I was pleased to see a relatively comprehensive set of AI principles that emerged from the Asilomar Conference that I blogged about a couple of weeks ago. The 2017 Asilomar conference organized by The Future of Life Institute,

“…brought together an amazing group of AI researchers from academia and industry, and thought leaders in economics, law, ethics, and philosophy for five days dedicated to beneficial AI.”

The gathering generated the Asilomar AI Principles, a remarkable first step on the eve of an awesome technological power. None of these people, from the panel I highlighted in the last blog, are anxious for regulation, but at the same time, they are aware of the enormous potential for bad actors to undermine whatever beneficial aspects of the technology might surface. Despite my misgivings, an AGI is inevitable. Someone is going to build it, and someone else will find a way to misuse it.

There are plenty more technologies that pose questions. One is nanotechnology. Unlike AI, Hollywood doesn’t spend much time painting nanotechnological dystopias, perhaps that along with the fact that they’re invisible to the naked eye, lets the little critters slip under the radar. While researching a paper for another purpose, I decided to look into nanotechnology to see what kinds of safeguards and guidelines are in place to deal with that rapidly emerging technology. There are clearly best practices by reputable researchers, scientists, and R&D departments but it was especially disturbing to find out that none of these are mandates. Especially since there are thousands of consumer products that use nanotechnology including food, cosmetics, clothing, electronics, and more. A nanometer is very small. Nanotech concerns itself with creations that exist in the 100nm range and below, roughly 7,500 times smaller than a human hair. In the Moore’s Law race, nanothings are the next frontier in cramming data onto a computer chip, or implanting them into our brains or living cells. However, due to their size, nanoparticles can also be inhaled, absorbed into the skin, flushed into the water supply and leeched into the soil. We don’t know what happens if we aggregate a large number of nanoparticles or differing combinations of nanoparticles in our body. We don’t even know how to test for it. And, get ready. Currently, there are no regulations. That means manufacturers do not need to disclose it, and there are no laws to protect the people who work with it. Herein, we have a classic example of bad decisions in the present that make for worse futures. Imagine the opposite: Anticipation of what could go wrong and sound industry intervention at a scale that pre-empts government intervention or the dystopian scenarios that the naysayers claim are impossible.

Bookmark and Share