Tag Archives: biohacking

Because we can.

 

It has happened to me more than once. I come up with what I think is a brilliant and seemingly original idea, do some preliminary research to make sure there aren’t already a hundred other ideas (at least published ones) just like it, and then I set to work sketching it out. Then, (and it could be a matter of days to weeks) BAM, there is my idea fully fleshed out, rendered and published—by someone else. I usually end up kicking myself for not having thought of it sooner or at least bringing it to fruition somehow instantaneously. The reality is, however, that for that fully rendered version to get published the creator(s) would have had to come up with the idea before me. Perhaps this amplifies the notion that there are no original ideas left in the world. Or, as an old friend used to argue, these concepts are floating around in a kind of ever-changing, cosmic psychosphere from which creative minds serendipitously siphon their ideas. So, of course, we’re going to have the same thoughts, we drink the same water. I think, perhaps the former.

Using this as a backdrop, however, I examine the idea of the so-called white hat hacker. There are hackers out there (good guys reportedly) that are always looking for new possible threats and vulnerabilities to the world of code, systems, software, and platforms. Sometimes their pursuits are purely imaginary, taking on the form of “What if?” scenarios, and then rolling up their sleeves to see if they can infect or penetrate the system or software in question. Then, in their benevolence, they share it with the world to make code and systems safer for all of us.Hmm. Okay, I’ll play along.

Recently, a team like this encoded some malware into physical strands of DNA. Huh? The story was reported by WIRED’s (man I wish they’d stick to technology reporting) Andy Greenberg last week. In theory, because DNA can maintain its structure for hundreds of years or more, you could theoretically store data within its indelible strands. (Remember the mosquitos frozen in amber from Jurassic Park?) And even though DNA is electron-microscope-small it is still a physical thing, full of code all its own. So, it would seem that a University of Washington computer science professor decided to slip some malware code into a strand of physical DNA and then when the code is deciphered or uploaded so to speak, the malware is in the system.

“‘We know that if an adversary has control over the data a computer is processing, it can potentially take over that computer,” says Tadayoshi Kohno, the University of Washington computer science professor who led the project, comparing the technique to traditional hacker attacks that package malicious code in web pages or an email attachment…’”

In this case, it is,

“‘…the information stored in the DNA they’re sequencing.’”

I don’t know. I’m not sure hackers should be messing with this stuff. PHOTO: wallpaperup

 

So hacking into some DNA sequencing software gets you what? There is apparently the opportunity (if you make rival DNA sequencing software) to steal some intellectual property or a malcontent could screw with somebody’s DNA analysis, you could plant some malware into your GMO tomatoes to keep prying eyes from your secret formula, but these sound like remote scenarios at best.

“Regardless of any practical reason for the research, however, the notion of building a computer attack—known as an “exploit”—with nothing but the information stored in a strand of DNA represented an epic hacker challenge for the University of Washington team.” [emphasis mine]

Here’s an ethical conundrum for me: no practical reason for the research. Do these guys have too much time on their hands (and too much funding)? Are they genuinely hoping to do some good? Or are they doing stuff like this because they can and if it happens to open a can of worms in the process, well, at least we can publish a paper on it? Or maybe it’s just an epic hacker challenge.

So, as radically out there as all this tinkering is, it is safe to say (back to my original point) someone else is or has thought of it too. Could someone Crispr a slice of DNA malware into the human genome to screw with someone’s pacemaker? Or perhaps could it just linger and wreak havoc at some later date? Maybe I’m not smart enough to think of all the horrific or diabolical downsides, but after all it is DNA. I can only imagine that, in light of this new research, someone will come up with a diabolical downside. Therein lies the dilemma.

For me, if you’re tinkering with DNA and you haven’t thought about the diabolical downsides you’re as reckless as a couple of kids skateboarding through speeding traffic. Someone’s going to get hurt. And there’s that word again. Reckless. Why is research money going toward things that have no practical reason? Maybe so that someone, not so kind will come up with one.

Reckless.

Harmless? What do you think?

https://www.wired.com/story/malware-dna-hack/
Bookmark and Share

Monitoring you.

One of my students is writing a paper on the rise of baby monitors and how technology has changed what and how we monitor. In the 80s, it the baby monitor was essentially a walkie-talkie in the “on” position. About all you could do is listen to breathing in another room. Today features that link to your smartphone include Bluetooth, night vision, motion detection, cloud storage and pulse oximetry.

I started thinking about what point in a child’s life a parent might stop monitoring. Most day care centers now allow remote login for parents to watch what their toddlers are up to and as they get older and have a smartphone (for emergencies, of course, )parents also have the ability to track their location. According to 2016 study by the Pew Research Center, “[…]parents today report taking a number of steps to influence their child’s digital behavior, from checking up on what their teen is posting on social media to limiting the amount of time their child spends in front of various screens.”

Having raised kids in the digital age, to me, this makes perfect sense. There are lots of dark alleys in the digital realm that can be detrimental to young eyes. Of course, when we realized that they were going off to college, it made some sense to believe that becoming an adult meant being responsible for your behavior. Needless to say, there are a lot of painful lessons on this journey.

Some say that the world is becoming an increasingly dangerous place. Should monitoring be something we become accustomed to, even for ourselves, all the time? What types of technologies might we accept to enable this? When should it stop? When do we need to know, and about whom?

What do you think?

Bookmark and Share

Future proof.

 

There is no such thing as future proof anything, of course, so I use the term to refer to evidence that a current idea is becoming more and more probable of something we will see in the future. The evidence I am talking about surfaced in a FastCo article this week about biohacking and the new frontier of digital implants. Biohacking has a loose definition and can reference using genetic material without regard to ethical procedures, to DIY biology, to pseudo-bioluminescent tattoos, to body modification for functional enhancement—see transhumanism. Last year, my students investigated this and determined that a society willing to accept internal implants was not a near-future scenario. Nevertheless, according to FastCo author Steven Melendez,

“a survey released by Visa last year that found that 25% of Australians are ‘at least slightly interested’ in paying for purchases through a chip implanted in their bodies.”

Melendez goes on to describe a wide variety of implants already in use for medical, artistic and personal efficiency and interviews Tim Shank, president of a futurist group called TwinCities+. Shank says,

“[For] people with Android phones, I can just tap their phone with my hand, right over the chip, and it will send that information to their phone..”

implants
Amal Graafstra’s Hands [Photo: courtesy of Amal Graafstra] c/o WIRED
The popularity of body piercings and tattoos— also once considered as invasive procedures—has skyrocketed. Implantable technology, especially as it becomes more functionally relevant could follow a similar curve.

I saw this coming some years ago when writing The Lightstream Chronicles. The story, as many of you know, takes place in the far future where implantable technology is mundane and part of everyday life. People regulate their body chemistry access the Lightstream (the evolved Internet) and make “calls” using their fingertips embedded with Luminous Implants. These future implants talk directly to implants in the brain, and other systemic body centers to make adjustments or provide information.

An ad for Luminous Implants, and the "tap" numbers for local attractions.
An ad for Luminous Implants, and the “tap” numbers for local attractions.
Bookmark and Share