Tag Archives: human engineering

A paralyzing electro magnetic laser: future possibility or sheer fantasy?

In episode 134, the Techman is paralyzed, lifted off the ground and thumped back to the floor. Whether it’s electrostatic, electromagnetic or superconductor electricity reduced to a hand-held device, the concept seems valid, especially 144 years from now. Part of my challenge is to make this design fiction logical by pulling threads of current research and technology to extrapolate possible futures. Mind you, it’s not a prediction, but a possibility. Here is my thinking:

Keiji’s weapon assumes that at least four technologies come together sometime in the next 14 decades. Safe bet? To start with the beam has to penetrate the door and significantly stun the subject. This idea is not that far-fetched. Weapons like this are already on the drawing board. For instance, the military is currently working on something called laser-guided directed-energy weapons. They work like “artificial lightning” to disable human targets. According to Defense Update,

Laser-Induced Plasma Channel (LIPC) technology was developed by Ionatron to channel electrical energy through the air at the target. The interaction of the air and laser light at specific wavelength, causes light to break into filaments, which form a plasma channel that conducts the energy like a virtual wire. This technology can be adjusted for non-lethal or lethal use. “

The imaginative leap here is that the beam can penetrate the wall to find it’s target. Given the other advancements, I feel reasonably safe stretching on this one.

LIPC at work.
LIPC at work.

Next, you have to get the subject off the ground. Lifting a 200-pound human would require at least two technologies assisted by a third. First is a levitating superconductor. A levitating superconductor uses electric current from a superconductor to produce magnetic forces that could counter the force of gravity. According to physics.org:

“Like frogs, humans are about two-thirds water, so if you had a big enough Bitter electromagnet, there’s no reason why a human couldn’t be levitated diamagnetically. None of the frogs that have taken part in the diamagnetic levitation experiments have experienced any adverse effects, which bodes well for any future human guinea pigs.”

The other ingredient is a highly powerful magnet. If we had a superconductor with a few decades of refinement and miniaturization, it’s conceivable that it could produce magnetic forces counter to the force of gravity. 1

The final component would be the power source small enough to fit inside the weapon and carrying enough juice to generate the plasma, and magnetic field for at least fifteen seconds. Today, you can buy a million-volt stun device on Amazon.com for around $50 and thyristor semiconductor technology could help ramp up the power surge necessary to sustain the arc.  Obviously, I’m not an engineer, but if you are, please feel free to chime in.

1. http://helios.gsfc.nasa.gov/qa_gp_elm.html

Bookmark and Share

What could happen.

1.  about last week

I’ll be the first to acknowledge that my blog last week was a bit depressing. However, if I thought, the situation was hopeless, I wouldn’t be doing this in the first place. I believe we have to acknowledge our uncanny ability to foul things up and, as best we can, design the gates and barriers into new technology to help prevent its abuse. And even though it may seem that way sometimes, I am not a technology pessimist or purely dystopian futurist. In truth, I’m tremendously excited about a plethora of new technologies and what they promise for the future.

2.  see the future

Also last week (by way of asiaone.com) Dr. Michio Kaku spoke in Singapore served up this future within the next 50 years.

“Imagine buying things just by blinking. Imagine doctors making an artificial heart for you within 20 hours. Imagine a world where garbage costs more than computer chips.”

Personally, I believe he’s too conservative. I see it happening much sooner. Kaku is a one of a handful of famous futurists, and his “predictions” have a lot of science behind them. So who am I to argue with him? He’s a brilliant scientist, prolific author, and educator. Most futurists or forecasters will be the first to tell you that their futures are not predictions but rather possible futures. According to forecaster Paul Saffo, “The goal of forecasting is not to predict the future but to tell you what you need to know to take meaningful action in the present.”1

According to Saffo “… little is certain, nothing is preordained, and what we do in the present affects how events unfold, often in significant, unexpected ways.”

Though my work is design fiction, I agree with Saffo. We both look at the future the same way. The objective behind my fictions is to jar us into thinking about the future so that it doesn’t surprise us. The more that our global citizenry thinks about the future and how it may impact them, the more likely that they will get involved. At least that is my hope. Hence, it is why I look for design fictions that will break out of the academy or the gallery show and seep into popular culture. The future needs to be an inclusive conversation.

Of course, the future is a broad topic: it impacts everything and everyone. So much of what we take for granted today could be entirely different—possibly even unrecognizable—tomorrow. Food, medicine, commerce, communication, privacy, security, entertainment, transportation, education, and jobs are just a few of the enormously important areas for potentially radical change. Saffo and Kaku don’t know what the future will bring any more than I do. We just look at what it could bring. I tend to approach it from the perspective of “What could go wrong?” Others take a more balanced view, and some look only at the positives. It is these perspectives that create the dialog and debate, which is what they are supposed to do. We also have to be careful that we don’t see these opinions as fact. Ray Kurzweil sees the equivalent of 20,000 years of change packed into the 21st century. Kaku (from the article mentioned above) sees computers being relegated to the

“‘dull, dangerous and dirty’ jobs that are repetitive, such as punching in data, assembling cars and any activity involving middlemen who do not contribute insights, analyses or gossip.’ To be employable, he stresses, you now have to excel in two areas: common sense and pattern recognition. Professionals such as doctors, lawyers and engineers who make value judgments will continue to thrive, as will gardeners, policemen, construction workers and garbage collectors.”

Looks like Michio and I disagree again. The whole idea behind artificial intelligence is in the area of predictive algorithms that use big data to learn. Machine learning programs detect patterns in data and adjust program actions accordingly.2 The idea of diagnosing illnesses, advising humans on potential human behaviors,  analyzing soil, site conditions and limitations, or even collecting trash are will within the realm of artificial intelligence. I see these jobs every bit as vulnerable as those of assembly line workers.

That, of course, is all part of the discussion—that we need to have.

 

1 Harvard Business Review | July–August 2007 | hbr.org
2. http://www.machinelearningalgorithms.com
Bookmark and Share

The ultimate wild card.

 

One of the things that futurists do when they imagine what might happen down the road is to factor in the wild card. Short of the sports or movie references a wild card is defined by dictionary.com as: “… of, being, or including an unpredictable or unproven element, person, item, etc.” One might use this term to say, “Barring a wild card event like a meteor strike, global thermonuclear war, or a massive earthquake, we can expect Earth’s population to grow by (x) percent.”

The thing about wild card events is that they do happen. 9/11 could be considered a wild card. Chernobyl, Fukushima, and Katrina would also fall into this category. At the core, they are unpredictable, and their effects are widespread. There are think tanks that work on the probabilities of these occurrences and then play with scenarios for addressing them.

I’m not sure what to call something that would be entirely predictable but that we still choose to ignore. Here I will go with a quote:

“The depravity of man is at once the most empirically verifiable reality but at the same time the most intellectually resisted fact.”

― Malcolm Muggeridge

Some will discount this automatically because the depravity of man refers to the Christian theology that without God, our nature is hopeless. Or as Jeremiah would say, our heart is “deceitful and desperately wicked” (Jeremiah 17:9).

If you don’t believe in that, then maybe you are willing to accept a more secular notion that man can be desperately stupid. To me, humanity’s uncanny ability to foul things up is the recurring (not-so) wild card. It makes all new science as much a potential disaster as it might be a panacea. We don’t consider it often enough. If we look back through my previous blogs from Transhumanism to genetic design, this threat looms large. You can call me a pessimist if you want, but the video link below stands as a perfect example of my point. It is a compilation of all the nuclear tests, atmospheric, underground, and underwater, since 1945. Some of you might think that after a few tests and the big bombs during WWII we decided to keep a lid on the insanity. Nope.

If you can watch the whole thing without sinking into total depression and reaching for the Clorox, you’re stronger than I am. And, sadly it continues. We might ask how we have survived this long.

Bookmark and Share

Meddling with the primal forces of nature.

 

 

One of the more ominous articles of recent weeks came from WIRED magazine in an article about the proliferation of DNA editing. The story is rich with technical talk and it gets bogged down in places but essentially it is about a group of scientists who are concerned about the Pandora’s Box they may have created with something called Crispr-Cas9, or Crispr for short. Foreseeing this as far back as 1975, the group thought that establishing “guidelines” for what biologists could and could not do; things like creating pathogens and mutations that could be passed on from generation to generation — maybe even in humans — were on the list of concerns. It all seemed very far off back in the 70’s, but not anymore. According to WIRED writer Amy Maxmen,

“Crispr-Cas9 makes it easy, cheap, and fast to move genes around—any genes, in any living thing, from bacteria to people.”

Maxmen states that startups are launching with Crispr as their focus. Two quotes that I have used excessively come to mind. First, Tobias Revell: “Someone, somewhere in a lab is playing with your future.”1. Next, from a law professor at Washington University in St. Louis: “We don’t write laws to protect against impossible things, so when the impossible becomes possible, we shouldn’t be surprised that the law doesn’t protect against it…” 2.

And so, we play catch-up. From the WIRED article:

“It could at last allow genetics researchers to conjure everything anyone has ever worried they would—designer babies, invasive mutants, species-specific bioweapons, and a dozen other apocalyptic sci-fi tropes. It brings with it all-new rules for the practice of research in the life sciences. But no one knows what the rules are—or who will be the first to break them.”

The most disconcerting part of all this, to me, is that now, before the rules exist that even the smallest breach in protocol could unleash repercussions of Biblical proportions. Everything from killer mosquitoes and flying spiders, horrific mutations and pandemics are up for grabs.

We’re not even close to ready for this. Don’t tell me that it could eradicate AIDS or Huntington’s disease. That is the coat that is paraded out whenever a new technology peers its head over the horizon.

“Now, with less than $100, an ordinary arachnologist can snip the wing gene out of a spider embryo and see what happens when that spider matures.”

Splice-movie-baby-Dren
From the movie “Splice”. Sometimes bad movies can be the most prophetic.

It is time to get the public involved in these issues whether through grass-roots efforts or persistence with their elected officials to spearhead some legislation.

“…straight-out editing of a human embryo sets off all sorts of alarms, both in terms of ethics and legality. It contravenes the policies of the US National Institutes of Health, and in spirit at least runs counter to the United Nations’ Universal Declaration on the Human Genome and Human Rights. (Of course, when the US government said it wouldn’t fund research on human embryonic stem cells, private entities raised millions of dollars to do it themselves.) Engineered humans are a ways off—but nobody thinks they’re science fiction anymore.”

Maxmen interviewed Harvard geneticist George Church. In a closer to the article,

“When I ask Church for his most nightmarish Crispr scenario, he mutters something about weapons and then stops short. He says he hopes to take the specifics of the idea, whatever it is, to his grave. But thousands of other scientists are working on Crispr. Not all of them will be as cautious. “You can’t stop science from progressing,” Jinek says. “Science is what it is.” He’s right. Science gives people power. And power is unpredictable.”

Who do you trust?

 

 

1. Critical Exploits. Performed by Tobias Revell. YouTube. January 28, 2014. Accessed February 14, 2014. http://www.youtube.com/watch?v=jlpq9M1VELU#t=364.
2. Farivar, Cyrus. “DOJ Calls for Drone Privacy Policy 7 Years after FBI’s First Drone Launched.” Ars Technica. September 27, 2013. Accessed March 13, 2014. http://arstechnica.com/tech-policy/2013/09/doj-calls-for-drone-privacy-policy-7-years-after-fbis-first-drone-launched/.
Bookmark and Share