Tag Archives: iPhone

Corporate Sci-Fi.

Note: Also published on LinkedIn


Why your company needs to play in the future.

As a professor of design and a design fiction researcher, I write academic papers and blog weekly about the future. I teach about the future of design, and I create future scenarios, sometimes with my students, that provoke us to look at what we are doing, what we are making, why we are making it and the ramifications that are inevitable. Primarily I try to focus both designers and decision makers on the steps they can take today to keep from being blindsided tomorrow. Futurists seem to be all the rage these days telling us to prepare for the Singularity, autonomous everything, or that robots will take our jobs. Recently, Jennifer Doudna, co-inventor of the gene editing technique called CrisprCas9 has been making the rounds and sounding the alarm that technology is moving so fast that we aren’t going to be able to contain a host of unforeseen (and foreseen) circumstances inside Pandora’s box. This concern should be prevalent, however, beyond just the bioengineering fields and extend into virtually anywhere that technology is racing forward fueled by venture capital and the desperate need to stay on top of whatever space in which we are playing. There is a lot at stake. Technology has already redefined privacy, behavioral wellness, personal autonomy, healthcare, labor, and maybe even our humanness, just to name a few.

Several recent articles have highlighted the changing world of design and how the pressure is on designers to make user adoption more like user addiction to ensure the success of a product or app. The world of behavioral economics is becoming a new arena in which we are using algorithms to manipulate users. Some designers are passing the buck to the clients or corporations that employ them for the questionable ethics of addictive products; others feel compelled to step aside and work on less lucrative projects or apply their skills to social causes. Most really care and want to help. But designers are uniquely positioned and trained to tackle these wicked problems—if we would collaborate with them.

Beyond the companies that might be deliberately trying to manipulate us, are those that unknowingly, or at least unintentionally, transform our behaviors in ways that are potentially harmful. Traditionally, we seek to hold someone responsible when a product or service is faulty, the physician for malpractice, the designer or manufacturer when a toy causes injury, a garment falls apart, or an appliance self-destructs. But as we move toward systemic designs that are less physical and more emotional, behavioral, or biological, design faults may not be so easy to identify and their repercussions noticeable only after serious issues have arisen. In fact, we launch many of the apps and operating systems used today with admitted errors and bugs. Designers rely on real-life testing to identify problems, issue patches, revisions, and versions.

In the realm of nanotechnology, while scientists and thought leaders have proposed guidelines and best-practices, research and development teams in labs around the world race forward without regulation creating molecule-sized structures, machines, and substances with no idea whether they are safe or what might be long-term effects of exposure to these elements. In biotechnology, while folks like Jennifer Doudna appeal to a morally ethical cadre of researchers to tread carefully in the realm of genetic engineering (especially when it comes to inheritable gene manipulation) we do not universally share those morals and ethics. Recent headlines attest to the fact that some scientists are bent on moving forward regardless of the implications.

Some technologies such as our smartphones have become equally invasive technology, yet they are now considered mundane. In just ten years since the introduction of the iPhone, we have transformed behaviors, upended our modes of communication, redefined privacy, distracted our attentions, distorted reality and manipulated a predicted 2.3 billion users as of 2017. [1] It is worth contemplating that this disruption is not from a faulty product, but rather one that can only be considered wildly successful.

There are a plethora of additional technologies that are poised to refine our worlds yet again including artificial intelligence, ubiquitous surveillance, human augmentation, robotics, virtual, augmented and mixed reality and the pervasive Internet of Things. Many of these technologies make their way into our experiences through the promise of better living, medical breakthroughs, or a safer and more secure life. But too often we ignore the potential downsides, the unintended consequences, or the systemic ripple-effects that these technologies spawn. Why?

In many cases, we do not want to stand in the way of progress. In others, we believe that the benefits outweigh the disadvantages, yet this is the same thinking that has spawned some of our most complex and daunting systems, from nuclear weapons to air travel and the internal combustion engine. Each of these began with the best of intentions and, in many ways were as successful and initially beneficial as they could be. At the same time, they advanced and proliferated far more rapidly than we were prepared to accommodate. Dirty bombs are a reality we did not expect. The alluring efficiency with which we can fly from one city to another has nevertheless spawned a gnarly network of air traffic, baggage logistics, and anti-terrorism measures that are arguably more elaborate than getting an aircraft off the ground. Traffic, freeways, infrastructure, safety, and the drain on natural resources are complexities never imagined with the revolution of personal transportation. We didn’t see the entailments of success.

This is not always true. There have often been scientists and thought leaders who were waving the yellow flag of caution. I have written about how, “back in 1975, scientists and researchers got together at Asilomar because they saw the handwriting on the wall. They drew up a set of resolutions to make sure that one day the promise of Bioengineering (still a glimmer in their eyes) would not get out of hand.”[2] Indeed, researchers like Jennifer Doudna continue to carry the banner. A similar conference took place earlier this year to alert us to the potential dangers of technology and earlier this year another to put forth recommendations and guidelines to ensure that when machines are smarter than we are they carry on in a beneficent role. Too often, however, it is the scientists and visionaries who attend these conferences. [3] Noticeably absent, though not always, is corporate leadership.

Nevertheless, in this country, there remains no safeguarding regulation for nanotech, nor bioengineering, nor AI research. It is a free-for-all, and all of which could have massive disruption not only to our lifestyles but also our culture, our behavior, and our humanness. Who is responsible?

For nearly 40 years there has been an environmental movement that has spread globally. Good stewardship is a good idea. But it wasn’t until most corporations saw a way for it to make economic sense that they began to focus on it and then promote it as their contribution to society, their responsibility, and their civic duty. As well intentioned as they may be (and many are) much more are not paying attention to the effect of their technological achievements on our human condition.

We design most technologies with a combination of perceived user need and commercial potential. In many cases, these are coupled with more altruistic motivations such as a “do no harm” commitment to the environment and fair labor practices. As we move toward the capability to change ourselves in fundamental ways, are we also giving significant thought to the behaviors that we will engender by such innovations, or the resulting implications for society, culture, and the interconnectedness of everything?

Enter Humane Technology

Ultimately we will have to demand this level of thought, beginning with ourselves. But we should not fight this alone. Corporations concerned with appearing sensitive and proactive toward the environment and social justice need to add a new pillar to their edifice as responsible global citizens: humane technology.

Humane technology considers the socio-behavioral ramifications of products and services: digital dependencies, and addictions, job loss, genetic repercussions, the human impact from nanotechnologies, AI, and the Internet of Things.

To whom do we turn when a 14-year-old becomes addicted to her smartphone or obsessed with her social media popularity? We could condemn the parents for lack of supervision, but many of them are equally distracted. Who is responsible for the misuse of a drone to vandalize property or fire a gun or the anticipated 1 billion drones flying around by 2030? [4] Who will answer for the repercussions of artificial intelligence that spouts hate speech? Where will the buck stop when genetic profiling becomes a requirement for getting insured or getting a job?

While the backlash against these types of unintended consequences or unforeseen circumstances are not yet widespread and citizens have not taken to the streets in mass protests, behavioral and social changes like these may be imminent as a result of dozens of transformational technologies currently under development in labs and R&D departments across the globe. Who is looking at the unforeseen or the unintended? Who is paying attention and who is turning a blind eye?

It was possible to have anticipated texting and driving. It is possible to anticipate a host of horrific side effects from nanotechnology to both humans and the environment. It’s possible to tag the ever-present bad actor to any number of new technologies. It is possible to identify when the race to master artificial intelligence may be coming at the expense of making it safe or drawing the line. In fact, it is a marketing opportunity for corporate interests to take the lead and the leverage their efforts to preempt adverse side effects as a distinctive advantage.

Emphasizing humane technology is an automatic benefit for an ethical company, and for those more concerned with profit than ethics, (just between you and me) it offers the opportunity for a better brand image and (at least) the appearance of social concern. Whatever the motivation, we are looking at a future where we are either prepared for what happens next, or we are caught napping.

This responsibility should start with anticipatory methodologies that examine the social, cultural and behavioral ramifications, and unintended consequences of what we create. Designers and those trained in design research are excellent collaborators. My brand of design fiction is intended to take us into the future in an immersive and visceral way to provoke the necessary discussion and debate that anticipate the storm should there be one, but promising utopia is rarely the tinder to fuel a provocation. Design fiction embraces the art critical thinking and thought problems as a means of anticipating conflict and complexity before these become problems to be solved.

Ultimately we have to depart from the idea that technology will be the magic pill to solve the ills of humanity, design fiction, and other anticipatory methodologies can help to acknowledge our humanness and our propensity to foul things up. If we do not self-regulate, regulation will inevitably follow, probably spurred on by some unspeakable tragedy. There is an opportunity, now for the corporation to step up to the future with a responsible, thoughtful compassion for our humanity.



1. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

2. http://theenvisionist.com/2017/08/04/now-2/

3. http://theenvisionist.com/2017/03/24/genius-panel-concerned/

4. http://www.abc.net.au/news/2017-08-31/world-of-drones-congress-brisbane-futurist-thomas-frey/8859008

Bookmark and Share

Design fiction. I want to believe.


I have blogged in the past about logical succession. When it comes to creating realistic design fiction narrative, there needs to be a sense of believability. Coates1 calls this “plausible reasoning.”, “[…]putting together what you know to create a path leading to one or several new states or conditions, at a distance in time.” In other words, for the audience to suspend their disbelief, there has to be a basic understanding of how we got here. If you depict something that is too fantastic, your audience won’t buy it, especially if you are trying to say that, “This could happen.”

“When design fictions are conceivable and realistically executed they carry a greater potential for making an impact and focusing discussion and debate around these future scenarios.”2

In my design futures collaborative studio, I ask students to do a rigorous investigation of future technologies, the ones that are on the bleeding edge. Then I want them to ask, “What if?” It is easier said than done. Particularly because of technological convergence, the way technologies merge with other technologies to form heretofore unimagined opportunities.

There was an article this week in Wired Magazine concerning a company called Magic Leap. They are in the MR business, mixed reality as opposed to virtual reality. With MR, the virtual imagery happens within the space you’re in—in front of your eyes—rather than in an entirely virtual space. The demo from Wired’s site is pretty convincing. The future of MR and VR, for me, are easy to predict. Will it get more realistic? Yes. Will it get cheaper, smaller, and ubiquitous? Yes. At this point, a prediction like this is entirely logical. Twenty-five years ago it would not have been as easy to imagine.

As the Wired article states,

“[…]the arrival of mass-market VR wasn’t imminent.[…]Twenty-five years later a most unlikely savior emerged—the smartphone! Its runaway global success drove the quality of tiny hi-res screens way up and their cost way down. Gyroscopes and motion sensors embedded in phones could be borrowed by VR displays to track head, hand, and body positions for pennies. And the processing power of a modern phone’s chip was equal to an old supercomputer, streaming movies on the tiny screen with ease.”

To have predicted that VR would be where it is today with billions of dollars pouring into fledgling technologies and realistic, and utterly convincing demonstrations would have been illogical. It would have been like throwing a magnet into a bucket of nails, rolling it around and guessing which nails would end up coming out attached.

What is my point? I think it is important to remind ourselves that things will move blindingly fast particularly when companies like Google and Facebook are throwing money at them. Then, the advancement of one only adds to the possibilities of the next iteration possibly in ways that no one can predict. As VR or MR merges with biotech or artificial reality, or just about anything else you can imagine, the possibilities are endless.

Unpredictable technology makes me uncomfortable. Next week I’ll tell you why.


  1. Coates, J.F., 2010. The future of foresight—A US perspective. Technological Forecasting & Social Change 77, 1428–1437.
  2. E. Scott Denison. “Timed-release Design Fiction: A Digital Online Methodology to Provoke Reflection on our Socio- Technological Future.”  Edited by Michal Derda Nowakowski. ISBN: 978-1-84888-427-4 Interdisciplinary.net.
Bookmark and Share

Privacy vs. Security. The public forum begins.

Some people think I tend toward paranoia. If a lack of blind trust in the human condition means I am paranoid, then I guess I am. This topic comes up today as we see the average citizen joining the discussion about encryption, security, privacy and the smartphone. By now you have ( unless you are living under a rock) heard that Apple has been ordered to help unlock the iPhone that belonged to the Santa Barbara terrorist Syed Farook. Apple has refused. You can get the details in the previous links, but mainly Apple doesn’t even know how to get into this iPhone. They designed it that way. It keeps them from getting into your data and keeps everyone else out as well. Apple would have to write a new operating system for this particular phone, sign it (to prove that it came from Apple and not some hack) and then upload it to the phone so that the FBI could get in. In essence, it is a master key, because it’s constituent parts become part of a knowledge-base that can render your phone insecure. If you think the FBI would never use this key or the program written to make it work on any other phone, well then, I think you can safely say you are not paranoid. Programmers call this a “back door.” If you believe that only the FBI will discover, find, or hack into the back door (for good reason, of course), then you can safely say you are not paranoid. Furthermore, there is no reasonable protection for this new “backdoor” into our phones. Once there is another way, someone will find it.

What good is encryption if it isn’t encryption?

I don’t think this is an argument for whether the FBI is justified in wanting to know what is on that phone. It’s is about how they get it, and whether or not they will be able to get it from anyone else (for good reason, of course) the next time they are curious.

You can see how this plays out in my design fiction scenario: Ubiquitous Surveillance. Check it out.



Bookmark and Share